Some properties of range restricted GMRES methods

نویسندگان

  • Mohammed Bellalij
  • Lothar Reichel
  • Hassane Sadok
چکیده

The GMRES method is one of the most popular iterative schemes for the solution of large linear systems of equations with a square nonsingular matrix. GMRES-type methods also have been applied to the solution of linear discrete ill-posed problems. Computational experience indicates that for the latter problems variants of the standard GMRES method, that require the solution to live in the range of a positive power of the matrix of the linear system of equations to be solved, generally yield more accurate approximations of the desired solution than standard GMRES. This paper investigates properties of these variants of GMRES.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence analysis of the global FOM and GMRES methods for solving matrix equations $AXB=C$ with SPD coefficients

In this paper‎, ‎we study convergence behavior of the global FOM (Gl-FOM) and global GMRES (Gl-GMRES) methods for solving the matrix equation $AXB=C$ where $A$ and $B$ are symmetric positive definite (SPD)‎. ‎We present some new theoretical results of these methods such as computable exact expressions and upper bounds for the norm of the error and residual‎. ‎In particular‎, ‎the obtained upper...

متن کامل

Theoretical results on the global GMRES method for solving generalized Sylvester matrix‎ ‎equations

‎The global generalized minimum residual (Gl-GMRES)‎ ‎method is examined for solving the generalized Sylvester matrix equation‎ ‎[sumlimits_{i = 1}^q {A_i } XB_i = C.]‎ ‎Some new theoretical results are elaborated for‎ ‎the proposed method by employing the Schur complement‎. ‎These results can be exploited to establish new convergence properties‎ ‎of the Gl-GMRES method for solving genera...

متن کامل

GMRES and Integral Operators

In this paper we show how the properties of integral operators and their approximations are reeected in the performance of the GMRES iteration and how these properties can be used to smooth the GMRES iterates, thereby strengthening the norm in which convergence takes place. The smoothed iteration has very similar properties to Broyden's method and we present some comparisons of the two methods ...

متن کامل

A Weighted RRGMRES Implementation

GMRES is a popular iterative method for the solution of linear system of equations with an unsymmetric square matrix. Range restricted GMRES (RRGMRES) is one GMRES version proposed by Calvetti et al in 2000. In this paper, a weighted implementation for RRGMRES is proposed. Numerical results prove this weighted RRGMRES is better than RRGMRES.

متن کامل

Two recursive GMRES-type methods for shifted linear systems with general preconditioning

We present two minimum residual methods for solving sequences of shifted linear systems, the right-preconditioned shifted GMRES and shifted Recycled GMRES algorithms which use a seed projection strategy often employed to solve multiple related problems. These methods are compatible with general preconditioning of all systems, and when restricted to right preconditioning, require no extra applic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 290  شماره 

صفحات  -

تاریخ انتشار 2015